论文标题
通过不平衡互动的推荐中缓解流行偏见:梯度观点
Mitigating Popularity Bias in Recommendation with Unbalanced Interactions: A Gradient Perspective
论文作者
论文摘要
推荐系统从历史用户 - 项目交互中学习,以确定目标用户的首选项目。这些观察到的相互作用通常是在长尾分布之后不平衡的。如此长尾数据导致流行偏见,向用户推荐流行但不是个性化的物品。我们提出了一个梯度的观点,以了解推荐模型优化中普及偏见的两个负面影响:(i)流行项目嵌入的梯度方向更接近积极相互作用,(ii)流行项目的积极梯度的幅度远大于不受欢迎的项目。为了解决这些问题,我们提出了一个简单而有效的框架,以从梯度的角度来减轻流行性偏见。具体而言,我们首先通过模型培训中的受欢迎程度偏差度量将每个用户嵌入和记录用户和项目的累积梯度归一化。为了解决流行性偏见问题,我们开发了一种基于梯度的嵌入调整方法,用于模型测试。该策略是通用的,模型的,不平衡的,并且可以无缝集成到大多数现有的推荐系统中。我们对两个经典推荐模型和四个现实世界数据集进行的广泛实验证明了我们方法对最先进的偏见基线的有效性。
Recommender systems learn from historical user-item interactions to identify preferred items for target users. These observed interactions are usually unbalanced following a long-tailed distribution. Such long-tailed data lead to popularity bias to recommend popular but not personalized items to users. We present a gradient perspective to understand two negative impacts of popularity bias in recommendation model optimization: (i) the gradient direction of popular item embeddings is closer to that of positive interactions, and (ii) the magnitude of positive gradient for popular items are much greater than that of unpopular items. To address these issues, we propose a simple yet efficient framework to mitigate popularity bias from a gradient perspective. Specifically, we first normalize each user embedding and record accumulated gradients of users and items via popularity bias measures in model training. To address the popularity bias issues, we develop a gradient-based embedding adjustment approach used in model testing. This strategy is generic, model-agnostic, and can be seamlessly integrated into most existing recommender systems. Our extensive experiments on two classic recommendation models and four real-world datasets demonstrate the effectiveness of our method over state-of-the-art debiasing baselines.