论文标题

用户相似性证明:区块链的空间测量器

Proof of User Similarity: the Spatial Measurer of Blockchain

论文作者

Wang, Shengling, Shi, Lina, Shi, Hongwei, Zhang, Yifang, Hu, Qin, Cheng, Xiuzhen

论文摘要

尽管工作证明(POW)共识主要主导了当前基于区块链的系统,但它一直因不经济的蛮力计算而受到批评。作为替代方案,能源保存和能量回收机制在视线中浮现。在本文中,我们提出了用户相似性(POU)的证明,这是一种独特的能量重新调整共识机制,利用有价值的计算能力来计算用户的相似性,并将计算结果纳入包装规则。但是,在POUS挑战中需要进行的昂贵计算在于矿工参与,并可能引起窃和说谎风险。为了解决这些问题,Pous通过允许矿工进行部分计算来拥抱最佳的图架。此外,提出了基于两方计算和贝叶斯真理的投票机制,以保证保留隐私的投票和真实的报告。值得注意的是,POU会在将计算能力回收回区块链中区分自身,因为它会将资源浪费转换为促进对用户的精制队列分析,并用作空间测量器并启用可搜索的区块链。我们构建了Pous的原型,并将其性能与POW进行比较。结果表明,POUS在平均TPS提高24.01%和平均确认潜伏期降低43.64%方面优于POW。此外,POU在镜像用户的空间信息方面的功能良好,计算时间和通信成本微不足道。

Although proof of work (PoW) consensus dominates the current blockchain-based systems mostly, it has always been criticized for the uneconomic brute-force calculation. As alternatives, energy-conservation and energy-recycling mechanisms heaved in sight. In this paper, we propose proof of user similarity (PoUS), a distinct energy-recycling consensus mechanism, harnessing the valuable computing power to calculate the similarities of users, and enact the calculation results into the packing rule. However, the expensive calculation required in PoUS challenges miners in participating, and may induce plagiarism and lying risks. To resolve these issues, PoUS embraces the best-effort schema by allowing miners to compute partially. Besides, a voting mechanism based on the two-parties computation and Bayesian truth serum is proposed to guarantee privacy-preserved voting and truthful reports. Noticeably, PoUS distinguishes itself in recycling the computing power back to blockchain since it turns the resource wastage to facilitate refined cohort analysis of users, serving as the spatial measurer and enabling a searchable blockchain. We build a prototype of PoUS and compare its performance with PoW. The results show that PoUS outperforms PoW in achieving an average TPS improvement of 24.01% and an average confirmation latency reduction of 43.64%. Besides, PoUS functions well in mirroring the spatial information of users, with negligible computation time and communication cost.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源