论文标题

基于量子核的替代模型,更快的变性量子算法

Faster variational quantum algorithms with quantum kernel-based surrogate models

论文作者

Smith, Alistair W. R., Paige, A. J., Kim, M. S.

论文摘要

我们提出了一种新的优化方法,用于嘈杂的近期量子处理器上的小到中等量表变分算法,该算法使用配备经典评估的量子核的高斯工艺替代模型。通常使用基于梯度的方法优化变异算法,但是这些方法很难在当前的嘈杂设备上实现,需要大量的目标函数评估。我们的方案将这种计算负担转移到了这些混合算法的经典优化器组件上,大大减少了量子处理器的查询数量。我们专注于变分量子本素(VQE)算法,并以数值证明这种替代模型特别适合该算法的目标函数。接下来,我们将这些模型应用于嘈杂和嘈杂的VQE模拟,并表明它们在最终准确性和收敛速度方面表现出比广泛使用的古典内核更好的性能。与VQA的典型随机梯度测定方法相比,我们的基于量子内核的方法始终达到明显更高的精度,同时需要小于量子级电路评估的数量级较小。我们根据内核的诱导特征空间分析了基于量子内核模型的性能,并明确构建了其特征图。最后,我们描述了使用其输入状态的经典张量张量网络表示近似表现最佳的量子内核的方案,因此为将这些方法扩展到较大的系统提供了途径。

We present a new optimization method for small-to-intermediate scale variational algorithms on noisy near-term quantum processors which uses a Gaussian process surrogate model equipped with a classically-evaluated quantum kernel. Variational algorithms are typically optimized using gradient-based approaches however these are difficult to implement on current noisy devices, requiring large numbers of objective function evaluations. Our scheme shifts this computational burden onto the classical optimizer component of these hybrid algorithms, greatly reducing the number of queries to the quantum processor. We focus on the variational quantum eigensolver (VQE) algorithm and demonstrate numerically that such surrogate models are particularly well suited to the algorithm's objective function. Next, we apply these models to both noiseless and noisy VQE simulations and show that they exhibit better performance than widely-used classical kernels in terms of final accuracy and convergence speed. Compared to the typically-used stochastic gradient-descent approach for VQAs, our quantum kernel-based approach is found to consistently achieve significantly higher accuracy while requiring less than an order of magnitude fewer quantum circuit evaluations. We analyse the performance of the quantum kernel-based models in terms of the kernels' induced feature spaces and explicitly construct their feature maps. Finally, we describe a scheme for approximating the best-performing quantum kernel using a classically-efficient tensor network representation of its input state and so provide a pathway for scaling these methods to larger systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源