论文标题

用于体积点云的基于群集的自动编码器

Cluster-Based Autoencoders for Volumetric Point Clouds

论文作者

Antholzer, Stephan, Berger, Martin, Hell, Tobias

论文摘要

自动编码器允许重建一组参数的给定输入。但是,由于计算成本,输入大小通常受到限制。因此,我们为体积点云提出了一种聚类和重新组装方法,以便允许高分辨率数据作为输入。我们此外,基于众所周知的折叠网云,提出了一个自动编码器,并讨论如何利用我们的方法在高分辨率点云之间以及将体积设计/样式转移到点云上,同时保持其形状。

Autoencoders allow to reconstruct a given input from a small set of parameters. However, the input size is often limited due to computational costs. We therefore propose a clustering and reassembling method for volumetric point clouds, in order to allow high resolution data as input. We furthermore present an autoencoder based on the well-known FoldingNet for volumetric point clouds and discuss how our approach can be utilized for blending between high resolution point clouds as well as for transferring a volumetric design/style onto a pointcloud while maintaining its shape.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源