论文标题

Spectromap:音频指纹的峰值检测算法

SpectroMap: Peak detection algorithm for audio fingerprinting

论文作者

López-García, Aarón

论文摘要

音频指纹是一种基于其独特特征来识别和匹配录音的技术。它涉及创建一个音频信号的凝结表示,可用于快速比较和匹配其他录音。指纹过程涉及分析音频信号以提取某些特征,例如光谱含量,节奏和节奏等。在本文中,我们介绍了Spectromap,这是一种开源GitHub存储库,用于用Python编程语言编写的音频指纹。它由峰值搜索算法组成,该算法通过时频带从光谱图中提取拓扑突出。在本文中,我们在高质量的城市声音数据集和环境音频记录中介绍了两个实验应用的算法功能,以描述其工作原理以及其在处理输入数据方面的有效性。最后,我们提出了两个Python脚本,这些脚本将重现拟议的案例研究,以减轻音频指纹系统的可重复性。

Audio fingerprinting is a technique used to identify and match audio recordings based on their unique characteristics. It involves creating a condensed representation of an audio signal that can be used to quickly compare and match against other audio recordings. The fingerprinting process involves analyzing the audio signal to extract certain features, such as spectral content, tempo, and rhythm, among other things. In this paper, we present SpectroMap, an open-source GitHub repository for audio fingerprinting written in Python programming language. It is composed of a peak search algorithm that extracts topological prominences from a spectrogram via time-frequency bands. In this paper, we introduce the algorithm functioning with two experimental applications in a high-quality urban sound dataset and environmental audio recordings to describe how it works and how effective it is in handling the input data. Finally, we have posed two Python scripts that would reproduce the proposed case studies in order to ease the reproducibility of our audio fingerprinting system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源