论文标题
非凸混合构成二次约束二次编程的离散化方法的增强:第一部分
Enhancements of Discretization Approaches for Non-Convex Mixed-Integer Quadratically Constraint Quadratic Programming: Part I
论文作者
论文摘要
我们研究了用于溶液的非凸混合构成二次二次二次程序(MIQCQPS)的混合智能编程(MIP)松弛技术。我们提出了非凸连续变量产物的MIP松弛方法。在第一部分中,我们考虑基于可分离重新制定的MIP放松。主要的重点是引入增强的可分离MIP松弛,用于z = xy形式的非凸二次产物,称为杂交分离(HYBS)。此外,我们为单变量二次术语(称为锯齿放松)引入了对数MIP松弛。我们将后者与HYB和现有的可分离重新进行结合,以得出MIQCQP的MIP松弛。我们对这些技术进行了全面的理论分析,强调了HYBS与其前辈相比的理论优势。我们进行了一项广泛的计算研究,以证明增强的MIP弛豫的有效性,以产生MIQCQP的紧密双重界限。在第二部分中,我们研究了扩展众所周知的MIP弛豫归一化多参数分解技术(NMDT)的MIP弛豫,并提出了进一步的理论和计算分析。
We study mixed-integer programming (MIP) relaxation techniques for the solution of non convex mixed-integer quadratically constrained quadratic programs (MIQCQPs). We present MIP relaxation methods for non convex continuous variable products. In Part I, we consider MIP relaxations based on separable reformulation. The main focus is the introduction of the enhanced separable MIP relaxation for nonconvex quadratic products of the form z=xy, called hybrid separable (HybS). Additionally, we introduce a logarithmic MIP relaxation for univariate quadratic terms, called sawtooth relaxation. We combine the latter with HybS and existing separable reformulations to derive MIP relaxations of MIQCQPs. We provide a comprehensive theoretical analysis of these techniques, underlining the theoretical advantages of HybS compared to its predecessors. We perform a broad computational study to demonstrate the effectiveness of the enhanced MIP relaxation in terms of producing tight dual bounds for MIQCQPs. In Part II, we study MIP relaxations that extend the well-known MIP relaxation normalized multiparametric disaggregation technique (NMDT) and present further theoretical and computational analyses.