论文标题

无监督的模型适应医学图像的无源分割

Unsupervised Model Adaptation for Source-free Segmentation of Medical Images

论文作者

Stan, Serban, Rostami, Mohammad

论文摘要

在提供足够的训练数据时,深度神经网络的最新流行率具有领导语义分割网络,以在医学领域实现人级的性能。但是,当任务预测分布外图像的语义图时,此类网络无法概括,这需要在新分布上重新训练模型。这个昂贵的过程需要专业知识才能产生培训标签。通过选择成像设备,即MRI或CT扫描仪,可以在医疗领域自然出现分布变化。为了打击在模型在完全注释的\ textIt {source域}中成功训练具有不同数据分布的模型后,可以使用无监督域适应(UDA)。大多数UDA方法通过创建共享源/目标潜在特征空间来确保目标概括。这允许源训练的分类器在目标域上保持性能。但是,大多数UDA方法都需要联合源和目标数据访问,这可能会导致有关患者信息的隐私泄漏。我们为医学图像分割提出了一种UDA算法,该算法在适应过程中不需要访问源数据,因此能够维护患者数据隐私。我们依赖于在适应时间的源潜在特征的近似值,并通过最小化基于最佳传输的分布距离度量来创建一个联合源/目标嵌入空间。我们证明我们的方法与最近的UDA医学细分有竞争力,即使需要附加的隐私性。

The recent prevalence of deep neural networks has lead semantic segmentation networks to achieve human-level performance in the medical field when sufficient training data is provided. Such networks however fail to generalize when tasked with predicting semantic maps for out-of-distribution images, requiring model re-training on the new distributions. This expensive process necessitates expert knowledge in order to generate training labels. Distribution shifts can arise naturally in the medical field via the choice of imaging device, i.e. MRI or CT scanners. To combat the need for labeling images in a target domain after a model is successfully trained in a fully annotated \textit{source domain} with a different data distribution, unsupervised domain adaptation (UDA) can be used. Most UDA approaches ensure target generalization by creating a shared source/target latent feature space. This allows a source trained classifier to maintain performance on the target domain. However most UDA approaches require joint source and target data access, which may create privacy leaks with respect to patient information. We propose an UDA algorithm for medical image segmentation that does not require access to source data during adaptation, and is thus capable in maintaining patient data privacy. We rely on an approximation of the source latent features at adaptation time, and create a joint source/target embedding space by minimizing a distributional distance metric based on optimal transport. We demonstrate our approach is competitive to recent UDA medical segmentation works even with the added privacy requisite.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源