论文标题
高维传统球的结构和同位素
Constructions and Isotopies of High-Dimensional Legendrian Spheres
论文作者
论文摘要
我们探索了任何维度的接触歧管中的legendrian球体的构建。涉及开放书籍的两个构造在任何联系流中都起作用,而ekholm引入的一个仅在$ \ mathbb {r}^{2n+1} $中工作。我们表明,这三个结构是Legendrian Unnongon的同位素,因此恢复了Courte和Ekholm的结果,这表明Ekholm的加倍过程产生了标准的Legendrian Unnongon。
We explore the construction of Legendrian spheres in contact manifolds of any dimension. Two constructions involving open books work in any contact manifold, while one introduced by Ekholm works only in $\mathbb{R}^{2n+1}$. We show that these three constructions are isotopic to the Legendrian unknot, thus recovering and generalising a result of Courte and Ekholm, that shows Ekholm's doubling procedure produces the standard Legendrian unknot.