论文标题
多项式的单色总和和产物
Monochromatic Sums and Products of Polynomials
论文作者
论文摘要
我们表明,模式$ \ {x,x+y,xy \} $是在正式整数多项式的空间中定期的,至少一个具有零常数项,具有原始递归界限。这为$ \ {x,x+y,xy \} $在$ \ mathbb {n} $上的分区规律性提供了一个新的证明,该分区的规律性提供了第一个原始的递归绑定。
We show that the pattern $\{x,x+y,xy\}$ is partition regular over the space of formal integer polynomials of degree at least one with zero constant term, with primitive recursive bounds. This provides a new proof for the partition regularity of $\{x,x+y,xy\}$ over $\mathbb{N}$, which gives the first primitive recursive bound.