论文标题
$ \ infty $ -dold-kan通过代表理论
$\infty$-Dold-Kan correspondence via representation theory
论文作者
论文摘要
我们给出了Happel和Ladkani的经典结果的纯粹衍生物理论重新制定,表明它在稳定的衍生机之间均匀地发生,然后与系数无关。最终的等效性提供了同质理论和表示理论之间的桥梁:的确,我们的结果是界限链链复合物的$ \ infty $ -dold-kan信函的衍生物理论版本。此外,在Groth和šťovíček开发的普遍倾斜理论的环境中,我们的等价性也可以作为光谱双模型的作用。
We give a purely derivator-theoretical reformulation and proof of a classic result of Happel and Ladkani, showing that it occurs uniformly across stable derivators and it is then independent of coefficients. The resulting equivalence provides a bridge between homotopy theory and representation theory: indeed, our result is a derivator-theoretic version of the $\infty$-Dold-Kan correspondence for bounded chain complexes. Moreover, our equivalence can also be realized as an action of a spectral bimodule in the setting of universal tilting theory developed by Groth and Šťovíček.