论文标题

光子狄拉克波导

Photonic Dirac Waveguides

论文作者

Kiriushechkina, Svetlana, Vakulenko, Anton, Smirnova, Daria, Guddala, Sriram, Komissarenko, Filipp, Allen, Monica, Allen, Jeffery, Khanikaev, Alexander B.

论文摘要

DIRAC方程是一个范式模型,描述了相对论自旋1/2颗粒的一系列有趣的特性,从抗颗粒的存在到克莱因隧道。但是,类似狄拉克的方程式已经发现应用程序远远超出了其原始范围,并且已被用来理解石墨烯和物质拓扑阶段的性质。在光子学领域中,模仿狄拉克物理学的机会也使拓扑光子绝缘子能够。在本文中,我们证明了光子狄拉克系统中明智地设计的合成潜力可以提供基础和准粒子和拓扑领域以外的物理特性。具体而言,我们引入了一类新的光学迪拉克波导,其引导的电磁模式赋予了伪旋转的自由度。伪旋转,加上能够设计出作用于其的合成规范电位的能力,可以控制在常规光学波导中无法实现的引导模式。特别是,我们使用一种硅纳米光元表,该硅元素的支持伪自由度的自由度作为一个测试平台,以预测和实验证实DIRAC波导的旋转性质。我们还证明,对于合适的捕获势,引导模式表现出旋转依赖性场分布,从而产生了它们独特的运输和辐射特性。因此,Dirac波导体现了自旋依赖性的辐射寿命 - 非热旋转式旋转效应 - 开放的新途径,用于自旋式旋转,控制的光学模式的控制特性以及与光子伪旋转的轻度相互作用。

The Dirac equation is a paradigmatic model that describes a range of intriguing properties of relativistic spin-1/2 particles, from the existence of antiparticles to Klein tunneling. However, the Dirac-like equations have found application far beyond its original scope, and has been used to comprehend the properties of graphene and topological phases of matter. In the field of photonics, the opportunity to emulate Dirac physics has also enabled topological photonic insulators. In this paper, we demonstrate that judiciously engineered synthetic potentials in photonic Dirac systems can offer physical properties beyond both the elementary and quasi-particles, and topological realms. Specifically, we introduce a new class of optical Dirac waveguides, whose guided electromagnetic modes are endowed with pseudo-spin degree of freedom. Pseudo-spin coupled with the ability to engineer synthetic gauge potentials acting on it, enables control over the guided modes which is unattainable in conventional optical waveguides. In particular, we use a silicon nanophotonic metasurface that supports pseudo-spin degree of freedom as a testing platform to predict and experimentally confirm a spin-full nature of the Dirac waveguides. We also demonstrate that, for suitable trapping potentials, the guided modes exhibit spin-dependent field distributions, which gives rise to their distinct transport and radiative properties. Thereby, the Dirac waveguides manifest spin-dependent radiative lifetimes - the non-Hermitian spin-Hall effect - and open new avenues for spin-multiplexing, controlling characteristics of guided optical modes, and tuning light-matter interactions with photonic pseudo-spins.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源