论文标题
来自地图和轨道等效的组
A group from a map and orbit equivalence
论文作者
论文摘要
在1979年发表的两篇论文中,R。Bowen和C.系列定义了一个富赫西亚组的动力系统,作用于双曲机平面$ \ Mathbb {H}^2 $。动力学由$ s^1 $的地图给出,尤其是圆圈的分段同构。在本文中,我们考虑了一个相反的问题:$ s^1 $扩展的分段同质形态的动态条件足以使地图成为``Bowen-series-type type''地图(见下文),对于某些组$ g $,我们可以发生哪些组?我们对这些问题给出了部分答案。
In two papers published in 1979, R. Bowen and C. Series defined a dynamical system from a Fuchsian group, acting on the hyperbolic plane $\mathbb{H}^2$. The dynamics is given by a map on $S^1$ which is, in particular, an expanding piecewise homeomorphism of the circle. In this paper we consider a reverse question: which dynamical conditions for an expanding piecewise homeomorphism of $S^1$ are sufficient for the map to be a ``Bowen-Series-type" map (see below) for some group $G$ and which groups can occur? We give a partial answer to these questions.