论文标题

数据驱动的4D速度轮廓的生成动脉瘤升主动脉主动脉

Data-driven generation of 4D velocity profiles in the aneurysmal ascending aorta

论文作者

Saitta, Simone, Maga, Ludovica, Armour, Chloe, Votta, Emiliano, O'Regan, Declan P., Salmasi, M. Yousuf, Athanasiou, Thanos, Weinsaft, Jonathan W., Xu, Xiao Yun, Pirola, Selene, Redaelli, Alberto

论文摘要

血流的数值模拟是研究上升胸动脉瘤(ATAA)的病理生理学的宝贵工具。为了准确再现血液动力学,计算流体动力学(CFD)模型必须采用现实的流入边界条件(BCS)。但是,体内速度测量值的有限可用性仍然使研究人员诉诸理想化的BC。在这项研究中,我们生成并彻底表征了一个合成4D主动脉速度曲线的大型数据集,适合用作CFD模拟的BCS。处理了30名具有ATAA受试者的4D流MRI扫描,以提取沿升主动脉提取横截面平面,以确保所有平面之间的空间对齐,并插值所有速度字段以参考构型。临床队列的速度谱图通过计算空间和时间特征的流动形态描述来广泛特征。通过利用主成分分析(PCA),建立了4D主动脉速度概况的统计形状模型(SSM),并生成了具有现实属性的437个合成案例的数据集。临床和合成数据集之间的比较表明,在关键的形态参数方面,合成数据具有与临床人群相似的特征。平均速度轮廓定性地类似于抛物线形状,但定量的特征是更复杂的流动模式,理想化的轮廓不会复制。在PCA变异和流描述符的PCA主模式之间发现了具有统计学意义的相关性。我们构建了4D主动脉速度谱的数据驱动的生成模型,适用于血流计算研究。提出的软件系统还允许将任何生成的速度概况映射到鉴于其坐标集的任何虚拟主题的入口平面。

Numerical simulations of blood flow are a valuable tool to investigate the pathophysiology of ascending thoracic aortic aneurysms (ATAA). To accurately reproduce hemodynamics, computational fluid dynamics (CFD) models must employ realistic inflow boundary conditions (BCs). However, the limited availability of in vivo velocity measurements still makes researchers resort to idealized BCs. In this study we generated and thoroughly characterized a large dataset of synthetic 4D aortic velocity profiles suitable to be used as BCs for CFD simulations. 4D flow MRI scans of 30 subjects with ATAA were processed to extract cross-sectional planes along the ascending aorta, ensuring spatial alignment among all planes and interpolating all velocity fields to a reference configuration. Velocity profiles of the clinical cohort were extensively characterized by computing flow morphology descriptors of both spatial and temporal features. By exploiting principal component analysis (PCA), a statistical shape model (SSM) of 4D aortic velocity profiles was built and a dataset of 437 synthetic cases with realistic properties was generated. Comparison between clinical and synthetic datasets showed that the synthetic data presented similar characteristics as the clinical population in terms of key morphological parameters. The average velocity profile qualitatively resembled a parabolic-shaped profile, but was quantitatively characterized by more complex flow patterns which an idealized profile would not replicate. Statistically significant correlations were found between PCA principal modes of variation and flow descriptors. We built a data-driven generative model of 4D aortic velocity profiles, suitable to be used in computational studies of blood flow. The proposed software system also allows to map any of the generated velocity profiles to the inlet plane of any virtual subject given its coordinate set.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源