论文标题
Alexandrov groupoids和twisted groupoid $ \ mathrm {c}^*$ - 代数的核维度
Alexandrov groupoids and the nuclear dimension of twisted groupoid $\mathrm{C}^*$-algebras
论文作者
论文摘要
我们认为,$ e $ a $ a $ a $ a ytale groupoid $ g $。当$ g $是主要的时,我们证明,减少的扭曲的groupoid $ \ mathrm {c}^*$ - 代数的核维度取决于$ g $的动态渐近维度以及其单位空间的拓扑覆盖维度。这概括了Guentner,Willett和Yu的类似定理,用于$ g $的$ \ mathrm {C}^*$ - 代数。我们的证明使用$ g $具有紧凑的单位空间的``'groupoid uniperizations'''$ \ widetilde {g} $和$ \ widetilde {e} $ $ g $和$ e $的$ \ wideTilde {e} $ $ g $和$ e $ y $ \ widetilde {e} $ cobs $ \ widetiLde。 $ \ widetilde g $的构建是用于R-Discrete(因此étale)$ g $的R-Discrete,不一定是主要的。当$ g $是étale时,$ g $的动态渐近维度和$ \ widetilde {g} $重合。我们表明,扭曲的扭曲代数的完整和减少的扭曲的groutoid $ \ mathrm {c}^*$ - $ g $的代数的最小单位化对扭曲的groupoid $ \ mathrm {c}^*$ - twist twist of $ \ \ \ \ \ \ betetilde {g} $的代数是同构的。我们将结果应用于扭曲的groupoid $ \ mathrm {c}^*$ - 代数的核维度,以获得类似的界限,以$ \ mathrm {c}^*$ - étalegroup的$ \ mathrm {c}^*$ - 具有封闭的Orbits和Abelian稳定性子组的代数。
We consider a twist $E$ over an étale groupoid $G$. When $G$ is principal, we prove that the nuclear dimension of the reduced twisted groupoid $\mathrm{C}^*$-algebra is bounded by a number depending on the dynamic asymptotic dimension of $G$ and the topological covering dimension of its unit space. This generalizes an analogous theorem by Guentner, Willett, and Yu for the $\mathrm{C}^*$-algebra of $G$. Our proof uses a reduction to the unital case where $G$ has compact unit space, via a construction of ``groupoid unitizations'' $\widetilde{G}$ and $\widetilde{E}$ of $G$ and $E$ such that $\widetilde{E}$ is a twist over $\widetilde{G}$. The construction of $\widetilde G$ is for r-discrete (hence étale) groupoids $G$ which are not necessarily principal. When $G$ is étale, the dynamic asymptotic dimension of $G$ and $\widetilde{G}$ coincide. We show that the minimal unitizations of the full and reduced twisted groupoid $\mathrm{C}^*$-algebras of the twist over $G$ are isomorphic to the twisted groupoid $\mathrm{C}^*$-algebras of the twist over $\widetilde{G}$. We apply our result about the nuclear dimension of the twisted groupoid $\mathrm{C}^*$-algebra to obtain a similar bound on the nuclear dimension of the $\mathrm{C}^*$-algebra of an étale groupoid with closed orbits and abelian stability subgroups that vary continuously.