论文标题

快速,准确且易于实现的Kapur-Rokhlin正交方案,用于轴对称几何形状中的单数积分

A fast, accurate, and easy to implement Kapur-Rokhlin quadrature scheme for singular integrals in axisymmetric geometries

论文作者

Toler, E., Cerfon, A. J., Malhotra, D.

论文摘要

在磁性限制融合中的许多应用都需要有效地计算出具有单数积分的表面积分。通常用于处理此类奇异性的奇异性减法方法是复杂的,可以准确地实现和低订单。相比之下,我们证明了Kapur-Rokhlin正交方案非常适合适用于旋转轴对称限制系统的对数奇异积分,易于实现,并且高阶准确。作为例证,我们展示了如何通过虚拟套管原理应用这种正交方案来有效,准确地计算磁场的正常成分,这是由于等离子体边界上的等离子体电流而导致的。

Many applications in magnetic confinement fusion require the efficient calculation of surface integrals with singular integrands. The singularity subtraction approaches typically used to handle such singularities are complicated to implement and low order accurate. In contrast, we demonstrate that the Kapur-Rokhlin quadrature scheme is well-suited for the logarithmically singular integrals encountered for a toroidally axisymmetric confinement system, is easy to implement, and is high order accurate. As an illustration, we show how to apply this quadrature scheme for the efficient and accurate calculation of the normal component of the magnetic field due to the plasma current on the plasma boundary, via the virtual casing principle.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源