论文标题

在超图独立性多项式的零上

On the zeroes of hypergraph independence polynomials

论文作者

Galvin, David, McKinley, Gwen, Perkins, Will, Sarantis, Michail, Tetali, Prasad

论文摘要

我们研究有界程度超图的独立性多项式复杂零的位置。对于图,这是一个长期研究的主题,在统计物理学,算法和组合术中应用。有界度图的无零区域的结果包括最佳无零磁盘上的Shearer结果,以及其他无零区域的最新结果。少得多的超图已知。我们通过证明所有最大程度$δ$的无零磁盘的无零磁盘的最大磁盘与最高度$δ$的最佳磁盘一样大,从而对有限度的超gaphs进行一些步骤,以了解有界度的超级gaphs。在$δ$中以对数因素为止,这是最佳的,即使对于所有边缘尺寸的超图严格大于$ 2 $。我们推测,对于$ k \ ge 3 $,$ k $ - 均匀的线性超图具有更大的零零磁盘的半径$ω(δ^^{ - \ frac {1} {1} {k-1}})$。我们在线性大型的情况下确定了这一点。

We study the locations of complex zeroes of independence polynomials of bounded degree hypergraphs. For graphs, this is a long-studied subject with applications to statistical physics, algorithms, and combinatorics. Results on zero-free regions for bounded-degree graphs include Shearer's result on the optimal zero-free disk, along with several recent results on other zero-free regions. Much less is known for hypergraphs. We make some steps towards an understanding of zero-free regions for bounded-degree hypergaphs by proving that all hypergraphs of maximum degree $Δ$ have a zero-free disk almost as large as the optimal disk for graphs of maximum degree $Δ$ established by Shearer (of radius $\sim 1/(e Δ)$). Up to logarithmic factors in $Δ$ this is optimal, even for hypergraphs with all edge-sizes strictly greater than $2$. We conjecture that for $k\ge 3$, $k$-uniform linear hypergraphs have a much larger zero-free disk of radius $Ω(Δ^{- \frac{1}{k-1}} )$. We establish this in the case of linear hypertrees.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源