论文标题

通用单量门栅极分解与连贯错误的通用性

Universality of universal single-qubit-gate decomposition with coherent errors

论文作者

Wang, Ruixia, Zhao, Peng, Yu, Haifeng

论文摘要

为了产生任意的单位和两倍的门,通用分解通常用于量子计算中,并且已经证明了这些分解的普遍性。但是,在现实的实验中,门错误可能会影响通用分解的普遍性。在这里,我们专注于单粒门分解方案,并研究对普遍性的相干影响。我们证明,在我们研究的参数空间中,某些连贯的错误不会影响原始普遍性,但其他一些错误会破坏它。我们根据我们的分析,使用连贯的错误提供了通用性的定义和分析解决方案,并提出了通过我们的分析恢复操作准确性的方法。我们还给出了三种保真度的分析结果,这些结果为普遍性提供了另一个指标,并全面描绘了分解方案的弹性,并用各种相干错误。我们的工作引入了与现有方法不同的量子汇编思维方式。

To generate arbitrary one- and two-qubit gates, the universal decompositions are usually used in quantum computing, and the universality of these decompositions has been demonstrated. However, in realistic experiments, gate errors may affect the universality of the universal decompositions. Here, we focus on the single-qubit-gate decomposition scheme and study the coherent-error effects on universality. We prove that, in the parameter space which we studied, some kinds of coherent errors will not affect the original universality, but some others will destroy it. We provide the definition and analytical solutions for universality with coherent errors and propose methods to resume the accuracy of the operations with coherent errors based on our analysis. We also give the analytical results for three kinds of fidelities, which provide another metric for universality and comprehensively depict the resilience of the decomposition scheme with various kinds of coherent errors. Our work introduces a different way of thinking for quantum compilation than existing methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源