论文标题
Hadamard的象征力和Hadamard Fat Grid的产品
Hadamard products of symbolic powers and Hadamard fat grids
论文作者
论文摘要
在本文中,我们解决了一个问题,对于点$ p,q \ in \ mathbb {p}^{2} $,$ i(p)^{m} \ star i(q)^{n} = i(p \ star q)^{m+n-1} $,我们根据零坐标的数量获得了不同的结果。连续地,我们使用结果来定义所谓的Hadamard Fat Grids,这是两组具有给定多重性的共线点的Hadamard乘积的结果。然后计算出最小的Hadamard脂肪网格的不变性,因为最小的分辨率,Waldschmidt常数和复兴。
In this paper we address the question if, for points $P, Q \in \mathbb{P}^{2}$, $I(P)^{m} \star I(Q)^{n}=I(P \star Q)^{m+n-1}$ and we obtain different results according to the number of zero coordinates in $P$ and $Q$. Successively, we use our results to define the so called Hadamard fat grids, which are the result of the Hadamard product of two sets of collinear points with given multiplicities. The most important invariants of Hadamard fat grids, as minimal resolution, Waldschmidt constant and resurgence, are then computed.