论文标题

通过MCMC突变进行去相关的retir采样器

Decorrelating ReSTIR Samplers via MCMC Mutations

论文作者

Sawhney, Rohan, Lin, Daqi, Kettunen, Markus, Bitterli, Benedikt, Ramamoorthi, Ravi, Wyman, Chris, Pharr, Matt

论文摘要

蒙特卡洛渲染算法通常利用像素之间的相关性来提高效率并提高图像质量。特别是对于实时应用程序,重复的储层重新采样提供了一个强大的框架,可以在图像中和跨多个框架上进行空间重复使用样本。尽管这些技术可实现相同的率,以实时直接照明和全球照明速度快100倍,但它们仍然远非最佳。例如,未经检查的时空重新采样通常会引入明显的相关伪像,而持有多个样本的储层则以重复样本的形式遭受贫困。我们展示了通过储层重采样的交织马尔可夫链蒙特卡洛(MCMC)突变有助于减轻这些问题,尤其是在具有光滑材料和难以采样的照明场景中。此外,我们的方法不会引入任何偏见,实际上,我们发现图像质量的改善,每个框架中的每个储层样本只有一个突变。

Monte Carlo rendering algorithms often utilize correlations between pixels to improve efficiency and enhance image quality. For real-time applications in particular, repeated reservoir resampling offers a powerful framework to reuse samples both spatially in an image and temporally across multiple frames. While such techniques achieve equal-error up to 100 times faster for real-time direct lighting and global illumination, they are still far from optimal. For instance, unchecked spatiotemporal resampling often introduces noticeable correlation artifacts, while reservoirs holding more than one sample suffer from impoverishment in the form of duplicate samples. We demonstrate how interleaving Markov Chain Monte Carlo (MCMC) mutations with reservoir resampling helps alleviate these issues, especially in scenes with glossy materials and difficult-to-sample lighting. Moreover, our approach does not introduce any bias, and in practice we find considerable improvement in image quality with just a single mutation per reservoir sample in each frame.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源