论文标题

昂贵的黑盒功能的有效有效的全球优化有效

Constrained Efficient Global Optimization of Expensive Black-box Functions

论文作者

Xu, Wenjie, Jiang, Yuning, Svetozarevic, Bratislav, Jones, Colin N.

论文摘要

我们研究有效的全球优化的问题,其中目标和约束都是昂贵的黑框函数,可以通过高斯流程来学习。我们提出了配置(有效的全局优化),这是一种简单有效的算法来解决它。在某些规律性的假设下,我们表明我们的算法在不受约束的情况下和相似的累积约束违反上限都具有相同的累积遗憾。对于常用的含量和平方指数核,我们的边界是均匀的,使我们能够将收敛速率得出到原始约束问题的最佳解决方案。此外,当原始的黑盒优化问题是不可行的时候,我们的方法自然提供了声明不可行的方案。从高斯过程,人工数字问题和黑盒建筑控制器调整问题中进行了采样实例的数值实验,都证明了我们算法的竞争性能。与其他最先进的方法相比,我们的算法显着提高了理论保证,同时实现了竞争性的经验表现。

We study the problem of constrained efficient global optimization, where both the objective and constraints are expensive black-box functions that can be learned with Gaussian processes. We propose CONFIG (CONstrained efFIcient Global Optimization), a simple and effective algorithm to solve it. Under certain regularity assumptions, we show that our algorithm enjoys the same cumulative regret bound as that in the unconstrained case and similar cumulative constraint violation upper bounds. For commonly used Matern and Squared Exponential kernels, our bounds are sublinear and allow us to derive a convergence rate to the optimal solution of the original constrained problem. In addition, our method naturally provides a scheme to declare infeasibility when the original black-box optimization problem is infeasible. Numerical experiments on sampled instances from the Gaussian process, artificial numerical problems, and a black-box building controller tuning problem all demonstrate the competitive performance of our algorithm. Compared to the other state-of-the-art methods, our algorithm significantly improves the theoretical guarantees, while achieving competitive empirical performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源