论文标题
在全球Molmer-Sorensen相互作用中建模噪声应用于量子近似优化
Modelling noise in global Molmer-Sorensen interactions applied to quantum approximate optimization
论文作者
论文摘要
应用于捕获离子的多数Mølmer-Sørensen(MS)相互作用为量子信息处理提供了独特的功能,其中包括量子模拟和量子近似优化算法(QAOA)的应用。在这里,我们开发了一个物理模型来描述在四个实验噪声源下的多数MS相互作用:振动模式频率波动,激光功率波动,热初始振动状态以及状态准备和测量误差。该模型从没有自由参数的简单实验测量中参数分析了这些错误。与在两个$^{171} $ yb $^+$ ions上实现MS交互序列的实验相比,我们验证了该模型。该模型在几个MS交互后显示了合理的协议,这些MS交互作用由还原的卡方统计量$χ^2_ \ Mathrm {Red} \大约2 $量化。作为应用程序,我们检查了三个和六个离子上的Maxcut QAOA实验。实验性能通过$ 91 \%$和$ 83 \%$的最佳理论值的近似值来量化。我们的模型预测$ 0.93^{+0.03} _ { - 0.02} $和$ 0.95^{+0.04} _ { - 0.03} $,在我们的分析中考虑到二级噪声源的后一个值中的分歧是后一个值。通过实际的实验改进以减少测量误差和径向陷阱频率变化,模型可以达到最佳的99 $ \%$的近似值。将这些改进纳入未来的实验将有望揭示噪声的新方面,以进行未来的建模和实验改进。
Many-qubit Mølmer-Sørensen (MS) interactions applied to trapped ions offer unique capabilities for quantum information processing, with applications including quantum simulation and the quantum approximate optimization algorithm (QAOA). Here, we develop a physical model to describe many-qubit MS interactions under four sources of experimental noise: vibrational mode frequency fluctuations, laser power fluctuations, thermal initial vibrational states, and state preparation and measurement errors. The model parameterizes these errors from simple experimental measurements, without free parameters. We validate the model in comparison with experiments that implement sequences of MS interactions on two $^{171}$Yb$^+$ ions. The model shows reasonable agreement after several MS interactions as quantified by the reduced chi-squared statistic $χ^2_\mathrm{red} \approx 2$. As an application we examine MaxCut QAOA experiments on three and six ions. The experimental performance is quantified by approximation ratios that are $91\%$ and $83\%$ of the optimal theoretical values. Our model predicts $0.93^{+0.03}_{-0.02}$ and $0.95^{+0.04}_{-0.03}$, respectively, with disagreement in the latter value attributable to secondary noise sources beyond those considered in our analysis. With realistic experimental improvements to reduce measurement error and radial trap frequency variations the model achieves approximation ratios that are 99$\%$ of the optimal. Incorporating these improvements into future experiments is expected to reveal new aspects of noise for future modeling and experimental improvements.