论文标题
经典与量子星期散射及其因果结构
Classical vs Quantum Eikonal Scattering and its Causal Structure
论文作者
论文摘要
我们研究了两个重力相互作用的物体的艾科尼尔散射,这是在较大的角动量和较大的质量能量中心的状态下。我们表明,散射相矩阵的Eikonal凸起是组收缩$ su(2)\ to ISO(2)$的直接结果,从旋转到平面的异构体,在较大的角动量极限下。我们将其扩展到所有散射角度,以及所有质量和旋转的所有顺序。从$ ISO(2)$接收的连续旋转表示形式方面,可以理解经典限制的出现。我们进一步研究了领先的经典艾科尼尔散射的竞争经典与量子校正,并找到了几个有趣的示例,其中量子校正比后康沃斯基的更重要。作为研究案例,我们分析了光子在牛顿常数中的散射中,直到近来呈领先顺序,并在良好的结构常数下领先顺序。我们研究了艾科尼尔(Eikonal)制度的因果结构,并建立了一组无线阳性界限,其中时间延迟的阳性是最简单的。
We study the eikonal scattering of two gravitationally interacting bodies, in the regime of large angular momentum and large center of mass energy. We show that eikonal exponentiation of the scattering phase matrix is a direct consequence of the group contraction $SU(2)\to ISO(2)$, from rotations to the isometries of the plane, in the large angular momentum limit. We extend it to all orders in the scattering angle, and for all masses and spins. The emergence of the classical limit is understood in terms of the continuous-spin representations admitted by $ISO(2)$. We further investigate the competing classical vs quantum corrections to the leading classical eikonal scattering, and find several interesting examples where quantum corrections are more important than Post-Minkowskian's. As a case of study, we analyse the scattering of a photon off a massless neutral scalar field, up to next-to-leading order in the Newton constant, and to leading order in the fine structure constant. We investigate the causal structure of the eikonal regime and establish an infinite set of non-linear positivity bounds, of which positivity of time delay is the simplest.