论文标题
AI智能能源系统中的解释性和治理:评论
AI Explainability and Governance in Smart Energy Systems: A Review
论文作者
论文摘要
传统的电力电网长期以来一直遭受操作性不稳定,不稳定,僵化和效率低下的困扰。智能电网(或智能能源系统)继续通过新兴技术,可再生能源和其他趋势来改变能源领域。人工智能(AI)应用于智能能源系统,以处理该领域中的大量和复杂数据,并做出智能和及时的决策。但是,AI缺乏解释性和可管理性是利益相关者阻碍能源部门快速吸收AI的主要关注点。本文对智能能源系统中的AI解释性和治理进行了综述。我们从Scopus数据库中收集3,568篇相关论文,自动发现15个参数或主题,以供AI能源治理,并通过审查150篇论文并提供研究的时间进展,从而详细阐述研究领域。发现参数或主题的方法基于“深度新闻”,即我们数据驱动的深度学习大数据分析方法,以自动发现和分析横截面的多观点信息,以实现更好的决策并为治理提供更好的治疗工具。研究结果表明,对能源系统中AI解释性的研究被细分并狭窄地集中在一些AI性状和能源系统问题上。本文加深了我们对能源AI治理的了解,并有望帮助政府,工业,学者,能源生产商和其他利益相关者了解能源领域AI的景观,从而使能源系统的设计,运营,利用和风险管理更好。
Traditional electrical power grids have long suffered from operational unreliability, instability, inflexibility, and inefficiency. Smart grids (or smart energy systems) continue to transform the energy sector with emerging technologies, renewable energy sources, and other trends. Artificial intelligence (AI) is being applied to smart energy systems to process massive and complex data in this sector and make smart and timely decisions. However, the lack of explainability and governability of AI is a major concern for stakeholders hindering a fast uptake of AI in the energy sector. This paper provides a review of AI explainability and governance in smart energy systems. We collect 3,568 relevant papers from the Scopus database, automatically discover 15 parameters or themes for AI governance in energy and elaborate the research landscape by reviewing over 150 papers and providing temporal progressions of the research. The methodology for discovering parameters or themes is based on "deep journalism", our data-driven deep learning-based big data analytics approach to automatically discover and analyse cross-sectional multi-perspective information to enable better decision-making and develop better instruments for governance. The findings show that research on AI explainability in energy systems is segmented and narrowly focussed on a few AI traits and energy system problems. This paper deepens our knowledge of AI governance in energy and is expected to help governments, industry, academics, energy prosumers, and other stakeholders to understand the landscape of AI in the energy sector, leading to better design, operations, utilisation, and risk management of energy systems.