论文标题
在应用于神经影像的应用中,通过节点协变量预测加权网络的响应
Predicting Responses from Weighted Networks with Node Covariates in an Application to Neuroimaging
论文作者
论文摘要
我们考虑在公共节点集上观察到许多网络的设置,并且每个观察值包括网络的边缘权重,每个节点处观察到的协变量以及总体响应。目的是使用边缘权重和节点协变量来预测响应,同时确定一组可解释的预测特征。我们激励的应用是神经成像,其中边缘权重编码在大脑区域之间测量的功能连通性,节点协变量在每个大脑区域进行编码任务激活,并且反应是疾病状态或行为任务上的疾病状态或评分。我们提出了一种基于假定的社区结构(在神经影像应用中自然发生的)构建组的方法。我们提出了两个特征分组方案,它们均包含边缘权重和节点协变量,并使用重叠的组套索惩罚得出用于优化的算法。综合数据的经验结果表明,我们的方法相对于竞争方法,具有相似或改进的预测误差以及卓越的支持恢复,从而使对基础过程的更容易解释和可能更准确地理解。我们还将方法应用于人类连接项目中的神经影像学数据。我们的方法广泛适用于高度需要解释性的神经影像学。
We consider the setting where many networks are observed on a common node set, and each observation comprises edge weights of a network, covariates observed at each node, and an overall response. The goal is to use the edge weights and node covariates to predict the response while identifying an interpretable set of predictive features. Our motivating application is neuroimaging, where edge weights encode functional connectivity measured between brain regions, node covariates encode task activations at each brain region, and the response is disease status or score on a behavioral task. We propose an approach that constructs feature groups based on assumed community structure (naturally occurring in neuroimaging applications). We propose two feature grouping schemes that incorporate both edge weights and node covariates, and we derive algorithms for optimization using an overlapping group LASSO penalty. Empirical results on synthetic data show that our method, relative to competing approaches, has similar or improved prediction error along with superior support recovery, enabling a more interpretable and potentially more accurate understanding of the underlying process. We also apply the method to neuroimaging data from the Human Connectome Project. Our approach is widely applicable in neuroimaging where interpretability is highly desired.