论文标题
仪表理论和重力的重新归一化
Renormalization of Gauge Theories and Gravity
论文作者
论文摘要
我们研究仪表理论和重力的扰动量化。我们的研究始于空间和粒子场的几何形状。然后,我们讨论(有效)量子一般相对论与标准模型的各种拉格朗日密度。此外,我们研究了相应的差异和量规变换的BRST双重复合物。接下来,我们将Connes-Kreimer重新归一化理论应用于扰动Feynman图扩展:在此框架中,亚diust词是通过Hopf代数的共同导体组织的,重新归一化的操作被描述为代数Birkhoff Birkhoff分解。为此,我们概括并改善已知的共同体身份和Van Suijlekom(2007)的定理,将(广义)仪表对称性与HOPF理想相关联。特别是,正如Kreimer(2008)所建议的那样,我们的概括适用于重力。此外,我们的结果适用于具有多个顶点残基,耦合常数等横向结构的理论。此外,我们还提供了这些HOPF理想与Feynman规则和所选的重新规范化方案的兼容性的标准。我们通过计算任何价和一般规格参数的相应的重力feynman规则。然后,我们显示所有传播器和三个价值顶点Feynman规则,并计算各自的取消身份。最后,我们提出了计划的后续项目:这包括对Wigner对线性重力的分类的概括,通过FEYNMAN图形共同体来表示取消身份的表示以及对重力顿场不同定义的等值的研究。特别是,我们认为研究扰动BRST共同体的适当设置是一个差异级的HOPF代数。
We study the perturbative quantization of gauge theories and gravity. Our investigations start with the geometry of spacetimes and particle fields. Then we discuss the various Lagrange densities of (effective) Quantum General Relativity coupled to the Standard Model. In addition, we study the corresponding BRST double complex of diffeomorphisms and gauge transformations. Next we apply Connes--Kreimer renormalization theory to the perturbative Feynman graph expansion: In this framework, subdivergences are organized via the coproduct of a Hopf algebra and the renormalization operation is described as an algebraic Birkhoff decomposition. To this end, we generalize and improve known coproduct identities and a theorem of van Suijlekom (2007) that relates (generalized) gauge symmetries to Hopf ideals. In particular, our generalization applies to gravity, as was suggested by Kreimer (2008). In addition, our results are applicable to theories with multiple vertex residues, coupling constants and such with a transversal structure. Additionally, we also provide criteria for the compatibility of these Hopf ideals with Feynman rules and the chosen renormalization scheme. We proceed by calculating the corresponding gravity-matter Feynman rules for any valence and with a general gauge parameter. Then we display all propagator and three-valent vertex Feynman rules and calculate the respective cancellation identities. Finally, we propose planned follow-up projects: This includes a generalization of Wigner's classification of elementary particles to linearized gravity, the representation of cancellation identities via Feynman graph cohomology and an investigation on the equivalence of different definitions for the graviton field. In particular, we argue that the appropriate setup to study perturbative BRST cohomology is a differential-graded Hopf algebra.