论文标题

基于深度学习的树木检测和直径估计

Tree Detection and Diameter Estimation Based on Deep Learning

论文作者

Grondin, Vincent, Fortin, Jean-Michel, Pomerleau, François, Giguère, Philippe

论文摘要

树知觉是迈向自主林业行动的必不可少的基础。当前的发展通常考虑从LiDAR传感器中的输入数据来解决森林导航,树木检测和直径估计问题。而摄像机与深度学习算法配对通常涉及物种分类或森林异常检测。在这两种情况下,数据不可用和森林多样性都限制了自主系统的深度学习发展。因此,我们提出了两个密集注释的图像数据集-43K合成,100个真实 - 用于边界框,分割掩码和关键点检测,以评估基于视觉方法的潜力。在我们的数据集中训练的深神经网络模型可用于树木检测的精度为90.4%,树木分割的87.2%和厘米准确的关键点估计。我们在其他森林数据集测试时测量模型的可推广性,以及它们具有不同数据集大小和体系结构改进的可扩展性。总体而言,实验结果为自主树砍伐操作和其他应用林业问题提供了有希望的途径。本文中的数据集和预培训模型可在\ href {https://github.com/norlab-ulaval/perceptreev1} {github}(https://github.com/norlab.com/norlab-ulaval/perceptreev1)上公开获得。

Tree perception is an essential building block toward autonomous forestry operations. Current developments generally consider input data from lidar sensors to solve forest navigation, tree detection and diameter estimation problems. Whereas cameras paired with deep learning algorithms usually address species classification or forest anomaly detection. In either of these cases, data unavailability and forest diversity restrain deep learning developments for autonomous systems. So, we propose two densely annotated image datasets - 43k synthetic, 100 real - for bounding box, segmentation mask and keypoint detections to assess the potential of vision-based methods. Deep neural network models trained on our datasets achieve a precision of 90.4% for tree detection, 87.2% for tree segmentation, and centimeter accurate keypoint estimations. We measure our models' generalizability when testing it on other forest datasets, and their scalability with different dataset sizes and architectural improvements. Overall, the experimental results offer promising avenues toward autonomous tree felling operations and other applied forestry problems. The datasets and pre-trained models in this article are publicly available on \href{https://github.com/norlab-ulaval/PercepTreeV1}{GitHub} (https://github.com/norlab-ulaval/PercepTreeV1).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源