论文标题

有效的基于相似性的被动过滤器修剪用于压缩CNN

Efficient Similarity-based Passive Filter Pruning for Compressing CNNs

论文作者

Singh, Arshdeep, Plumbley, Mark D.

论文摘要

卷积神经网络(CNN)在各种应用中都取得了巨大成功。但是,CNNS的计算复杂性和内存存储是其在资源受限设备上部署的瓶颈。降低计算成本和CNN的内存开销的最新努力涉及基于相似性的被动过滤器修剪方法。基于相似性的被动过滤器修剪方法计算过滤器的成对相似性矩阵,并消除了一些相似的过滤器以获得小的修剪CNN。但是,计算成对相似性矩阵的计算复杂性很高,尤其是当卷积层具有许多过滤器时。为了降低计算复杂性在获得成对相似性矩阵时,我们建议使用一种有效的方法,其中仅使用NyStröm近似方法,仅从其少数列中近似完整的成对相似性矩阵。与基于相似性的基于相似性的相似度相似性矩阵相比,提出的基于有效相似性的无源过滤器修剪方法的速度更快3倍,并且在CNN的计算相同的计算下,CNN的计算相同的精度具有相同的精度。除此之外,提出的基于有效的基于相似性的修剪方法的性能与现有基于规范的修剪方法相似或更好。在DCASE 2021任务1A基线网络和设计用于声学场景分类的VGGISH网络等CNN上,评估了所提出的修剪方法的功效。

Convolution neural networks (CNNs) have shown great success in various applications. However, the computational complexity and memory storage of CNNs is a bottleneck for their deployment on resource-constrained devices. Recent efforts towards reducing the computation cost and the memory overhead of CNNs involve similarity-based passive filter pruning methods. Similarity-based passive filter pruning methods compute a pairwise similarity matrix for the filters and eliminate a few similar filters to obtain a small pruned CNN. However, the computational complexity of computing the pairwise similarity matrix is high, particularly when a convolutional layer has many filters. To reduce the computational complexity in obtaining the pairwise similarity matrix, we propose to use an efficient method where the complete pairwise similarity matrix is approximated from only a few of its columns by using a Nyström approximation method. The proposed efficient similarity-based passive filter pruning method is 3 times faster and gives same accuracy at the same reduction in computations for CNNs compared to that of the similarity-based pruning method that computes a complete pairwise similarity matrix. Apart from this, the proposed efficient similarity-based pruning method performs similarly or better than the existing norm-based pruning methods. The efficacy of the proposed pruning method is evaluated on CNNs such as DCASE 2021 Task 1A baseline network and a VGGish network designed for acoustic scene classification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源