论文标题

probnerf:2D图像的3D形状的不确定性感知性推断

ProbNeRF: Uncertainty-Aware Inference of 3D Shapes from 2D Images

论文作者

Hoffman, Matthew D., Le, Tuan Anh, Sountsov, Pavel, Suter, Christopher, Lee, Ben, Mansinghka, Vikash K., Saurous, Rif A.

论文摘要

从单个2D图像中推断对象形状的问题是不足的。关于哪些对象合理的先验知识可以帮助您,但是即使考虑到这样的先验知识,对象的封闭部分的形状仍然可能存在不确定性。最近,已经开发了有条件的神经辐射场(NERF)模型,可以学会从单个2D图像中推断出3D模型的良好点估计值。这些模型的不确定性估计的问题受到了较少的关注。在这项工作中,我们提出了概率的nerf(probnerf),这是一种模型和推理策略,用于学习3D对象形状和外观的概率生成模型,并进行后推理以从2D图像中恢复这些属性。 Probnerf被训练为差异自动编码器,但是在测试时,我们使用哈密顿蒙特卡洛(HMC)进行推理。给定一个或几张对象的2D图像(可能部分被遮住),Probnerf不仅能够准确地对其所看到的部分进行建模,还可以提出关于其所见部分的现实和多样化的假设。我们表明,ProbNEF成功的关键是(i)确定性的渲染方案,(ii)退火HMC策略,(iii)基于超网络的解码器体系结构,以及(iv)对完整的NERF权重进行推断,而不仅仅是低维密码。

The problem of inferring object shape from a single 2D image is underconstrained. Prior knowledge about what objects are plausible can help, but even given such prior knowledge there may still be uncertainty about the shapes of occluded parts of objects. Recently, conditional neural radiance field (NeRF) models have been developed that can learn to infer good point estimates of 3D models from single 2D images. The problem of inferring uncertainty estimates for these models has received less attention. In this work, we propose probabilistic NeRF (ProbNeRF), a model and inference strategy for learning probabilistic generative models of 3D objects' shapes and appearances, and for doing posterior inference to recover those properties from 2D images. ProbNeRF is trained as a variational autoencoder, but at test time we use Hamiltonian Monte Carlo (HMC) for inference. Given one or a few 2D images of an object (which may be partially occluded), ProbNeRF is able not only to accurately model the parts it sees, but also to propose realistic and diverse hypotheses about the parts it does not see. We show that key to the success of ProbNeRF are (i) a deterministic rendering scheme, (ii) an annealed-HMC strategy, (iii) a hypernetwork-based decoder architecture, and (iv) doing inference over a full set of NeRF weights, rather than just a low-dimensional code.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源