论文标题
质子中的共线和K_T依赖性parton密度的参数化
Parametrizations of collinear and k_T-dependent parton densities in a proton
论文作者
论文摘要
构建了质子中Parton分布功能的一种新型参数化,基于其$ Q^2 $ - 大小$ x $值的$ q^2 $进化。在我们的分析中,分别遵守了总属于Llewellyn-Smith和Gottfried Sum规则。对于单线夸克和Gluon密度,势头保护已被考虑。然后,使用金伯 - 马丁 - ryskin处方,我们将考虑因素扩展到质子中的横向动量依赖性(TMD或不整合)Gluon和Quark分布,目前在许多现象学应用中起着重要作用。后者的分析表达式首次衍生出对低和大$ x $的有效期。
A new type of parametrization for parton distribution functions in a proton, based on their $Q^2$-evolution at large and small $x$ values, is constructed. In our analysis, the valence and nonsinglet parts obey the Gross-Llewellyn-Smith and Gottfried sum rules, respectively. For the singlet quark and gluon densities momentum conservation is taken into account. Then, using the Kimber-Martin-Ryskin prescription, we extend the consideration to Transverse Momentum Dependent (TMD, or unintegrated) gluon and quark distributions in a proton, which currently plays an important role in a number of phenomenological applications. The analytical expressions for the latter, valid for both low and large $x$, are derived for the first time.