论文标题

在VEC中,合作感测和上传数字双胞胎的质量成本权衡

Cooperative Sensing and Uploading for Quality-Cost Tradeoff of Digital Twins in VEC

论文作者

Liu, Kai, Xu, Xincao, Dai, Penglin, Chen, Biwen

论文摘要

传感技术,无线通信和计算范式的最新进展推动了车辆的发展,成为一种智能和电子消费产品。本文通过合作感应和上传研究了在车辆边缘计算中启用数字双胞胎(DT-VEC),并首次尝试实现DT-VEC中优质成本的权衡。首先,提出了DT-VEC架构,在该体系结构中可以通过车辆到车辆到基础结构(V2I)通信来感知异质信息并将其上传到边缘节点。数字双胞胎是根据感知的信息建模的,这些信息从逻辑视图中用于反映物理车辆环境的实时状态。其次,我们通过考虑数字双胞胎的及时性和一致性以及冗余,感应成本和传输成本来得出合作感测模型和V2I上传模型。在此基础上,提出了双向目标问题,以最大程度地提高系统质量并最大程度地降低系统成本。第三,我们提出了一个基于多代理多目标(MAMO)深入强化学习的解决方案,其中提出了决斗评论家网络以根据状态的价值和行动优势评估代理行动。最后,我们进行了全面的绩效评估,证明了Mamo的优势。

Recent advances in sensing technologies, wireless communications, and computing paradigms drive the evolution of vehicles in becoming an intelligent and electronic consumer products. This paper investigates enabling digital twins in vehicular edge computing (DT-VEC) via cooperative sensing and uploading, and makes the first attempt to achieve the quality-cost tradeoff in DT-VEC. First, a DT-VEC architecture is presented, where the heterogeneous information can be sensed by vehicles and uploaded to the edge node via vehicle-to-infrastructure (V2I) communications. The digital twins are modeled based on the sensed information, which are utilized to from the logical view to reflect the real-time status of the physical vehicular environment. Second, we derive the cooperative sensing model and the V2I uploading model by considering the timeliness and consistency of digital twins, and the redundancy, sensing cost, and transmission cost. On this basis, a bi-objective problem is formulated to maximize the system quality and minimize the system cost. Third, we propose a solution based on multi-agent multi-objective (MAMO) deep reinforcement learning, where a dueling critic network is proposed to evaluate the agent action based on the value of state and the advantage of action. Finally, we give a comprehensive performance evaluation, demonstrating the superiority of MAMO.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源