论文标题

加强学习基于学习的缺陷缓解添加剂制造的质量保证

Reinforcement Learning-based Defect Mitigation for Quality Assurance of Additive Manufacturing

论文作者

Chung, Jihoon, Shen, Bo, Law, Andrew Chung Chee, Zhenyu, Kong

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Additive Manufacturing (AM) is a powerful technology that produces complex 3D geometries using various materials in a layer-by-layer fashion. However, quality assurance is the main challenge in AM industry due to the possible time-varying processing conditions during AM process. Notably, new defects may occur during printing, which cannot be mitigated by offline analysis tools that focus on existing defects. This challenge motivates this work to develop online learning-based methods to deal with the new defects during printing. Since AM typically fabricates a small number of customized products, this paper aims to create an online learning-based strategy to mitigate the new defects in AM process while minimizing the number of samples needed. The proposed method is based on model-free Reinforcement Learning (RL). It is called Continual G-learning since it transfers several sources of prior knowledge to reduce the needed training samples in the AM process. Offline knowledge is obtained from literature, while online knowledge is learned during printing. The proposed method develops a new algorithm for learning the optimal defect mitigation strategies proven the best performance when utilizing both knowledge sources. Numerical and real-world case studies in a fused filament fabrication (FFF) platform are performed and demonstrate the effectiveness of the proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源