论文标题
tw-bag:张张量的脑吸引门网络,用于插入的破坏扩散张量成像
TW-BAG: Tensor-wise Brain-aware Gate Network for Inpainting Disrupted Diffusion Tensor Imaging
论文作者
论文摘要
扩散加权成像(DWI)是一种通过扩散张量成像(DTI)模型在神经科学和神经系统临床研究中常用的高级成像技术。容量标量指标包括分数各向异性,平均扩散率和轴向扩散率,可以从DTI模型中得出,以总结水扩散率和其他定量微观结构信息以用于临床研究。但是,临床实践的限制可能会导致缺失切片的次优DWI获取(由于视野有限或默认切片的获取)。为了避免为小组研究丢弃有价值的主题,我们提出了一种新型的3D张量脑吸引门网络(TW-BAG),以用于介入受干扰的DTI。提出的方法是根据动态门机制和独立张量解码器量身定制的。我们使用从预测的张量和标量DTI指标中得出的常见图像相似性指标评估了公开可用的人连接项目(HCP)数据集的建议方法。我们的实验结果表明,所提出的方法可以重建原始的大脑DTI体积并恢复相关的临床成像信息。
Diffusion Weighted Imaging (DWI) is an advanced imaging technique commonly used in neuroscience and neurological clinical research through a Diffusion Tensor Imaging (DTI) model. Volumetric scalar metrics including fractional anisotropy, mean diffusivity, and axial diffusivity can be derived from the DTI model to summarise water diffusivity and other quantitative microstructural information for clinical studies. However, clinical practice constraints can lead to sub-optimal DWI acquisitions with missing slices (either due to a limited field of view or the acquisition of disrupted slices). To avoid discarding valuable subjects for group-wise studies, we propose a novel 3D Tensor-Wise Brain-Aware Gate network (TW-BAG) for inpainting disrupted DTIs. The proposed method is tailored to the problem with a dynamic gate mechanism and independent tensor-wise decoders. We evaluated the proposed method on the publicly available Human Connectome Project (HCP) dataset using common image similarity metrics derived from the predicted tensors and scalar DTI metrics. Our experimental results show that the proposed approach can reconstruct the original brain DTI volume and recover relevant clinical imaging information.