论文标题

Point-syn2real:半监督的合成到现实的跨域学习,用于3D点云中的对象分类

Point-Syn2Real: Semi-Supervised Synthetic-to-Real Cross-Domain Learning for Object Classification in 3D Point Clouds

论文作者

Wang, Ziwei, Arablouei, Reza, Liu, Jiajun, Borges, Paulo, Bishop-Hurley, Greg, Heaney, Nicholas

论文摘要

使用LIDAR 3D点云数据的对象分类对于诸如自动驾驶之类的现代应用程序至关重要。但是,标记点云数据是劳动密集型的,因为它要求人类注释者从不同的角度可视化和检查3D数据。在本文中,我们提出了一种半监督的跨域学习方法,该方法不依赖于点云的手动注释,并且执行类似于完全监督的方法。我们利用可用的3D对象模型来训练可以推广到现实点云的分类器。我们通过从多个观点和任意部分闭塞中对3D对象模型进行采样来模拟点云的采集。然后,我们通过随机旋转并添加高斯噪声来增强所得的点云集,以更好地模拟现实世界的场景。然后,我们在合成和增强数据集上训练点云编码模型,例如DGCNN,PointNet ++,并在相应的现实世界数据集上评估其跨域分类性能。我们还介绍了Point-Syn2Real,这是一种新的基准数据集,用于点云上的跨域学习。我们通过此数据集进行了广泛的实验的结果表明,在跨域的可推广性方面,对点云的跨域学习方法的表现优于室内和室外设置中相关的基线和最新方法。该代码和数据将在发布时可用。

Object classification using LiDAR 3D point cloud data is critical for modern applications such as autonomous driving. However, labeling point cloud data is labor-intensive as it requires human annotators to visualize and inspect the 3D data from different perspectives. In this paper, we propose a semi-supervised cross-domain learning approach that does not rely on manual annotations of point clouds and performs similar to fully-supervised approaches. We utilize available 3D object models to train classifiers that can generalize to real-world point clouds. We simulate the acquisition of point clouds by sampling 3D object models from multiple viewpoints and with arbitrary partial occlusions. We then augment the resulting set of point clouds through random rotations and adding Gaussian noise to better emulate the real-world scenarios. We then train point cloud encoding models, e.g., DGCNN, PointNet++, on the synthesized and augmented datasets and evaluate their cross-domain classification performance on corresponding real-world datasets. We also introduce Point-Syn2Real, a new benchmark dataset for cross-domain learning on point clouds. The results of our extensive experiments with this dataset demonstrate that the proposed cross-domain learning approach for point clouds outperforms the related baseline and state-of-the-art approaches in both indoor and outdoor settings in terms of cross-domain generalizability. The code and data will be available upon publishing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源