论文标题
通过交叉编码器RERANKing改善双语词典感应
Improving Bilingual Lexicon Induction with Cross-Encoder Reranking
论文作者
论文摘要
双语监督有限的双语词典感应(BLI)在多语言NLP中是一项至关重要但具有挑战性的任务。当前最新的BLI方法依赖于跨语性单词嵌入(CLWES)的诱导来捕获跨语言单词相似性。这样的clwes是通过传统静态模型(例如Vecmap)或2)通过从多语言预审前的语言模型(MPLM)提取类型级别的clwes获得的。在这项工作中,我们提出了一种新型的半监督后的重新研究方法,称为blicer(带有交叉编码器的BLI),适用于任何预算的Clwe空间,可提高其BLI功能。关键的想法是从MPLM中“提取”跨语性词汇知识,然后将其与原始CLWES结合。通过1)创建一个单词相似性数据集完成了这个关键步骤,其中包括正词对(即真实翻译)和由原始clwe空间引起的硬负对,然后2)以交叉辅助方式微调MPLM(例如Mbert或XLM-R),以预测相似性得分。在推断时,我们3)将原始Clwe空间的相似性得分与Bli-Tuned交叉编码器的分数相结合。 Blicer建立了两个标准的BLI基准,涵盖了各种各样的语言:它在整个方面都优于一系列强大的基线。我们还用不同的CLWES验证Blicer的鲁棒性。
Bilingual lexicon induction (BLI) with limited bilingual supervision is a crucial yet challenging task in multilingual NLP. Current state-of-the-art BLI methods rely on the induction of cross-lingual word embeddings (CLWEs) to capture cross-lingual word similarities; such CLWEs are obtained 1) via traditional static models (e.g., VecMap), or 2) by extracting type-level CLWEs from multilingual pretrained language models (mPLMs), or 3) through combining the former two options. In this work, we propose a novel semi-supervised post-hoc reranking method termed BLICEr (BLI with Cross-Encoder Reranking), applicable to any precalculated CLWE space, which improves their BLI capability. The key idea is to 'extract' cross-lingual lexical knowledge from mPLMs, and then combine it with the original CLWEs. This crucial step is done via 1) creating a word similarity dataset, comprising positive word pairs (i.e., true translations) and hard negative pairs induced from the original CLWE space, and then 2) fine-tuning an mPLM (e.g., mBERT or XLM-R) in a cross-encoder manner to predict the similarity scores. At inference, we 3) combine the similarity score from the original CLWE space with the score from the BLI-tuned cross-encoder. BLICEr establishes new state-of-the-art results on two standard BLI benchmarks spanning a wide spectrum of diverse languages: it substantially outperforms a series of strong baselines across the board. We also validate the robustness of BLICEr with different CLWEs.