论文标题
使用安全贝叶斯优化的个性化剂量指导
Personalized Dose Guidance using Safe Bayesian Optimization
论文作者
论文摘要
这项工作考虑了使用贝叶斯优化的个性化剂量指导的问题,该贝叶斯优化学习了针对每个人量身定制的最佳药物剂量,从而改善了治疗结果。使用内点方法的安全学习可确保患者的安全性高。通过学习1型糖尿病患者的最佳推注胰岛素剂量以抵消饮食消费的作用的问题,证明了这一点。从没有关于患者的先验信息开始,我们的剂量指导算法能够改善治疗结果(以百分比范围的衡量),而不会危害患者的安全性。还讨论了其他潜在的医疗保健应用。
This work considers the problem of personalized dose guidance using Bayesian optimization that learns the optimum drug dose tailored to each individual, thus improving therapeutic outcomes. Safe learning using interior point method ensures patient safety with high probability. This is demonstrated using the problem of learning the optimum bolus insulin dose in patients with type 1 diabetes to counteract the effect of meal consumption. Starting from no a priori information about the patients, our dose guidance algorithm is able to improve the therapeutic outcome (measured in terms of % time-in-range) without jeopardizing patient safety. Other potential healthcare applications are also discussed.