论文标题
Fei-guo-phong的抛物线流量的曲率估计值
Curvature estimates on a parabolic flow of Fei-Guo-Phong
论文作者
论文摘要
在\ cite {fgp}中,fei,guo和phong建立了长期存在的抛物线流量,从$ 11 $ -Dimensional Supergravity,涉及Riemannian曲率$ {\ rm rm rm}(g(t))$和4-forms $ f(t)$ f(t)$ f(t)$。在本文中,我们获得了长期存在相同流量的新标准,仅涉及Ricci曲率$ {\ rm ric}(g(t))$,$ f(t)$,但以及$ \ nabla_ {g(t)} f(t)} f(t)f(t)$。
In \cite{FGP}, Fei, Guo and Phong established a criteria for the long-time existence of their parabolic flow from $11$-dimensional supergravity, which involves Riemannian curvatures ${\rm Rm}(g(t))$ and 4-forms $F(t)$. In this paper, we obtain a new criteria for the long-time existence of the same flow, which involves only Ricci curvatures ${\rm Ric}(g(t))$, $F(t)$, but as well as $\nabla_{g(t)}F(t)$.