论文标题

显着性可能是您所需的一切

Saliency Can Be All You Need In Contrastive Self-Supervised Learning

论文作者

Kocaman, Veysel, Shir, Ofer M., Bäck, Thomas, Belbachir, Ahmed Nabil

论文摘要

我们提出了一项针对对比的自我监督学习(SSL)的增强政策,其形式已经建立的显着图像分割技术,名为“基于全球对比度的显着区域检测”。从经验上观察到,该检测技术是为无关的计算机视觉任务而设计的,它在SSL协议中扮演了增强促进器的作用。该观察结果植根于我们通过SSL时尚,太阳能电池板的空中图像学习的实用尝试,这些试图表现出具有挑战性的边界模式。在该技术在我们的问题领域的成功集成下,我们制定了一项广泛的程序,并进行了全面的,系统的性能评估,并使用了受标准增强技术的各种对比度SSL算法。该评估是在多个数据集中进行的,表明所提出的技术确实有助于SSL。我们假设在处理下游分割任务时,显着图像分割是否足以作为对比SSL的唯一增强策略。

We propose an augmentation policy for Contrastive Self-Supervised Learning (SSL) in the form of an already established Salient Image Segmentation technique entitled Global Contrast based Salient Region Detection. This detection technique, which had been devised for unrelated Computer Vision tasks, was empirically observed to play the role of an augmentation facilitator within the SSL protocol. This observation is rooted in our practical attempts to learn, by SSL-fashion, aerial imagery of solar panels, which exhibit challenging boundary patterns. Upon the successful integration of this technique on our problem domain, we formulated a generalized procedure and conducted a comprehensive, systematic performance assessment with various Contrastive SSL algorithms subject to standard augmentation techniques. This evaluation, which was conducted across multiple datasets, indicated that the proposed technique indeed contributes to SSL. We hypothesize whether salient image segmentation may suffice as the only augmentation policy in Contrastive SSL when treating downstream segmentation tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源