论文标题

复杂性同步

Complexity Synchronization

论文作者

Mahmoodi, Korosh, Kerick, Scott E., Grigolini, Paolo, Franaszczuk, Piotr J., West, Bruce J.

论文摘要

复杂现象中反功率法光谱(IPL)的观察性无处不在,需要理论用于捕获其分形维度,动力学和统计的动态分形现象。这些属性和其他属性是由于非线性动态网络而产生的复杂性的后果,该网络共同汇总了针对生物医学现象的网络效应(NE)或更狭窄地作为网络生理学。本文中,我们解决了NE上的时间序列的可测量后果,由大脑,心脏和肺部器官网络的不同部分产生,这与它们的网络间和网络内的相互作用直接相关。此外,这些相同的生理器官网络已被证明可以产生关键事件(CE)时间序列,并使用改进的扩散熵分析(MDEA)显示了此处,以随着时间的推移通过缩放指数来衡量,具有复杂性的缩放指标,并具有复杂性的准复杂性变化。这种时间序列是由大脑,心脏和肺部器官网络的不同部分生成的,结果不取决于相关时间序列的潜在相干性能,而是证明了复杂性的广义同步。脑电图(大脑),心电图(心脏)和呼吸时间序列的缩放指标之间的高阶同步受各种生理器官网络动力学的多重型行为的定量相互依赖性的控制。 NE的这种后果为复杂网络的动力学完全概括地表征复杂性同步(CS)打开了大门,独立于科学,工程或技术环境。

The observational ubiquity of inverse power law spectra (IPL) in complex phenomena entails theory for dynamic fractal phenomena capturing their fractal dimension, dynamics, and statistics. These and other properties are consequences of the complexity resulting from nonlinear dynamic networks collectively summarized for biomedical phenomena as the Network Effect (NE) or focused more narrowly as Network Physiology. Herein we address the measurable consequences of the NE on time series generated by different parts of the brain, heart, and lung organ networks, which are directly related to their inter-network and intra-network interactions. Moreover, these same physiologic organ networks have been shown to generate crucial event (CE) time series, and herein are shown, using modified diffusion entropy analysis (MDEA), to have scaling indices with quasiperiodic changes in complexity, as measured by scaling indices, over time. Such time series are generated by different parts of the brain, heart, and lung organ networks, and the results do not depend on the underlying coherence properties of the associated time series but demonstrate a generalized synchronization of complexity. This high order synchrony among the scaling indices of EEG (brain), ECG (heart), and respiratory time series is governed by the quantitative interdependence of the multifractal behavior of the various physiological organs' network dynamics. This consequence of the NE opens the door for an entirely general characterization of the dynamics of complex networks in terms of complexity synchronization (CS) independently of the scientific, engineering, or technological context.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源