论文标题
条件力矩模型的光谱表示学习
Spectral Representation Learning for Conditional Moment Models
论文作者
论文摘要
因果推理和经济学的许多问题可以在条件力矩模型的框架中提出,这些框架通过有条件的力矩限制来表征目标功能。对于非参数条件力矩模型,有效的估计通常依赖于预先施加的条件,以实现假设空间的各种措施,当使用柔性模型时,这很难验证。在这项工作中,我们通过提出一项程序来解决此问题,该程序自动以受控措施的措施自动学习表示形式。我们的方法近似于有条件期望运算符的光谱分解定义的线性表示,该分解可用于内核估计器,并已知可促进在某些设置中的最小值最佳估计。我们显示,可以从数据中有效估计此表示形式,并为所得估计器建立L2一致性。我们评估了有关近端因果推理任务的建议方法,在高维,半合成数据上表现出了有希望的表现。
Many problems in causal inference and economics can be formulated in the framework of conditional moment models, which characterize the target function through a collection of conditional moment restrictions. For nonparametric conditional moment models, efficient estimation often relies on preimposed conditions on various measures of ill-posedness of the hypothesis space, which are hard to validate when flexible models are used. In this work, we address this issue by proposing a procedure that automatically learns representations with controlled measures of ill-posedness. Our method approximates a linear representation defined by the spectral decomposition of a conditional expectation operator, which can be used for kernelized estimators and is known to facilitate minimax optimal estimation in certain settings. We show this representation can be efficiently estimated from data, and establish L2 consistency for the resulting estimator. We evaluate the proposed method on proximal causal inference tasks, exhibiting promising performance on high-dimensional, semi-synthetic data.