论文标题

周期性多孔介质内部湍流传热中的固体障碍物表面粗糙度的流动状态和类型

Flow regimes and types of solid obstacle surface roughness in turbulent heat transfer inside periodic porous media

论文作者

Srikanth, Vishal, Peverall, Dylan, Kuznetsov, Andrey V.

论文摘要

本文的重点是系统地研究多孔培养基对微观流体物理学的固体障碍物表面粗糙度的影响,并报告其对宏观阻力和Nusselt数量的影响。雷诺平均流场通过数值模拟,以通过周期性的多孔介质进行模拟,该介质由平方缸的在线排列组成,并在圆柱体表面上具有方形粗糙度颗粒。相对于表面粗糙度颗粒高度确定了两个流程度:细和粗糙度状态。在细度粗糙度状态下的粗糙度颗粒的影响仅限于固体障碍物表面周围的近壁边界层。在粗糙度状态下,粗糙度颗粒在多孔介质的整个孔隙空间中修改了微观流场。在精细的粗糙度状态下,从粗糙的实心障碍物到多孔介质内的流体的热传递小于光滑的实心障碍物。在粗糙的粗糙度状态下,从粗糙的固体障碍物到多孔介质内的流体的热传递有所增强。对于最小的粗糙度颗粒高度,还可以观察到在细性的粗糙度状态中总拖动减少。表面粗糙度颗粒间距决定了固体障碍物表面的分数面积,并被循环,重新连接和停滞的流量覆盖。随着粗糙度粒子间距的增加,传热速率有两个竞争因素:由于重新连接的流动覆盖的表面积增加而增加,并且由于实心障碍物表面上的粗糙度颗粒数量减少而导致减少。降低孔隙率并增加雷诺数,扩大了表面粗糙度对微观流动的影响。

The focus of this paper is to systematically study the influence of solid obstacle surface roughness in porous media on the microscale flow physics and report its effect on macroscale drag and Nusselt number. The Reynolds averaged flow field is numerically simulated for a flow through a periodic porous medium consisting of an in-line arrangement of square cylinders with square roughness particles on the cylinder surface. Two flow regimes are identified with respect to the surface roughness particle height: fine and coarse roughness regimes. The effect of the roughness particles in the fine roughness regime is limited to the near-wall boundary layer around the solid obstacle surface. In the coarse roughness regime, the roughness particles modify the microscale flow field in the entire pore space of the porous medium. In the fine roughness regime, the heat transfer from the rough solid obstacles to the fluid inside the porous medium is less than that from a smooth solid obstacle. In the coarse roughness regime, there is an enhancement in the heat transfer from the rough solid obstacle to the fluid inside the porous medium. Total drag reduction is also observed in the fine roughness regime for the smallest roughness particle height. The surface roughness particle spacing determines the fractional area of the solid obstacle surface covered by recirculating, reattached, and stagnating flow. As the roughness particle spacing increases, there are two competing factors for the heat transfer rate: increase due to more surface area covered by reattached flow, and decrease due to the decrease in the number of roughness particles on the solid obstacle surface. Decreasing the porosity and increasing the Reynolds number amplify the effect of the surface roughness on the microscale flow.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源