论文标题
杆和狭缝光子晶体微孔,用于片上腔量子电动力学
Rod and slit photonic crystal microrings for on-chip cavity quantum electrodynamics
论文作者
论文摘要
结合了高质量因子($ Q $)和小模式体积($ v $)的微型/纳米腔已用于增强用于腔量子电动力学(CQED)的光结合相互作用。耳语画廊模式(WGM)的几何形状(例如微型风险和微孔)支持高$ Q $,并且对设计和制造很友好,但是$ V $通常仅限于数十立方波长,以避免WGM辐射。一维或二维光子晶体缺陷几何形状提供的更强的模态限制可以产生亚立方波长$ v $,但是精确设计和维度控制的要求通常更为严格,以确保高$ q $。鉴于它们的互补特征,对结合WGM和光子晶体腔的优势的几何形状一直存在持续的兴趣。最近,一个“微型”光子晶体环(MPHCR)表现出了在实现WGM的额外缺陷定位($> $> $> $> $> $ 10 $ \ times $减少$ v $),同时保持高$ q $($ \ of of q $($ \ of of10^6 $)和其他WGM特征,以使耦合和设计均匀。但是,所使用的单元细胞几何形状与传统的PHC腔不同,而蚀刻表面可能太接近了CQED应用的嵌入式量子节点(量子点,原子缺陷旋转等)。在这里,我们报告了两种新型的PHCR设计,该设计具有“杆”和“裂缝”单元细胞,它们的几何形状更传统,适合固态CQED。 Rod和Slit PHCR都有高-Q $($> 10^6 $),并保留了WGM耦合属性。在ROD PHCR中观察到了另外的$ \ $〜$ 〜10 $ \ times $减少$ v $。此外,基本和二阶PHC模式都在slit PHCR中共存,具有高$ q $ s和良好的耦合。我们的工作表明,高Q/V $ PHCR通常可以直接设计和制造,并且是CQED探索的有前途的平台。
Micro-/nanocavities that combine high quality factor ($Q$) and small mode volume ($V$) have been used to enhance light-matter interactions for cavity quantum electrodynamics (cQED). Whispering gallery mode (WGM) geometries such as microdisks and microrings support high-$Q$ and are design- and fabrication-friendly, but $V$ is often limited to tens of cubic wavelengths to avoid WGM radiation. The stronger modal confinement provided by either one-dimensional or two-dimensional photonic crystal defect geometries can yield sub-cubic-wavelength $V$, yet the requirements on precise design and dimensional control are typically much more stringent to ensure high-$Q$. Given their complementary features, there has been sustained interest in geometries that combine the advantages of WGM and photonic crystal cavities. Recently, a `microgear' photonic crystal ring (MPhCR) has shown promise in enabling additional defect localization ($>$ 10$\times$ reduction of $V$) of a WGM, while maintaining high-$Q$ ($\approx10^6$) and other WGM characteristics in ease of coupling and design. However, the unit cell geometry used is unlike traditional PhC cavities, and etched surfaces may be too close to embedded quantum nodes (quantum dots, atomic defect spins, etc.) for cQED applications. Here, we report two novel PhCR designs with `rod' and `slit' unit cells, whose geometries are more traditional and suitable for solid-state cQED. Both rod and slit PhCRs have high-$Q$ ($>10^6$) with WGM coupling properties preserved. A further $\approx$~10$\times$ reduction of $V$ by defect localization is observed in rod PhCRs. Moreover, both fundamental and 2nd-order PhC modes co-exist in slit PhCRs with high $Q$s and good coupling. Our work showcases that high-$Q/V$ PhCRs are in general straightforward to design and fabricate and are a promising platform to explore for cQED.