论文标题

系统演示:进攻性语言错误分析(OLEA)英语的工具和基础架构

System Demo: Tool and Infrastructure for Offensive Language Error Analysis (OLEA) in English

论文作者

Grace, Marie, Seabrum, Xajavion "Jay", Srinivas, Dananjay, Palmer, Alexis

论文摘要

自动检测进攻性语言是紧迫的社会需求。许多系统在明确的进攻性语言上表现良好,但努力地检测出更为复杂,细微或隐式的令人讨厌和可恨的语言的情况。 OLEA是一个开源Python库,在检测英语中令人反感语言的背景下,提供了易于使用的工具。 OLEA还提供了一个基础架构,用于重新分布新的数据集和几乎没有编码的分析方法。

The automatic detection of offensive language is a pressing societal need. Many systems perform well on explicit offensive language but struggle to detect more complex, nuanced, or implicit cases of offensive and hateful language. OLEA is an open-source Python library that provides easy-to-use tools for error analysis in the context of detecting offensive language in English. OLEA also provides an infrastructure for re-distribution of new datasets and analysis methods requiring very little coding.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源