论文标题

波浪划分过程:专为复杂几何处理的数值处理而设计的路径积分

Wave-Scattering processes: path-integrals designed for the numerical handling of complex geometries

论文作者

Dauchet, Jérémi, Charon, Julien, Brunel, Laurent, Coustet, Christophe, Blanco, Stéphane, Cornet, Jean-François, Hafi, Mouna El-, Eymet, Vincent, Forest, Vincent, Fournier, Richard, Gros, Fabrice, Piaud, Benjamin, Vourc'h, Thomas

论文摘要

依靠Feynman-KAC路径综合方法,我们对复杂的三维对象对波浪单散射的新统计观点提出了新的统计观点。该方法是在三种模型上实现的:Schiff近似,天生的近似和严格的诞生系列 - 以及通常的解释性困难,例如对散射器分布的矩分析(大小,方向,形状...)。在计算贡献方面,我们表明,现在可以在求解电磁散射时可以使用蒙特卡洛法在几何复杂性方面的普遍认可的特征。

Relying on Feynman-Kac path-integral methodology, we present a new statistical perspective on wave single-scattering by complex three-dimensional objects. The approach is implemented on three models -- Schiff approximation, Born approximation and rigorous Born series -- and usual interpretative difficulties such as the analysis of moments over scatterer distributions (size, orientation, shape...) are addressed. In terms of computational contribution, we show that commonly recognized features of Monte Carlo method with respect to geometric complexity can now be available when solving electromagnetic scattering.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源