论文标题

使用反应循环场进行运动计划:避免碰撞和目标收敛的2D分析

Motion Planning using Reactive Circular Fields: A 2D Analysis of Collision Avoidance and Goal Convergence

论文作者

Becker, Marvin, Köhler, Johannes, Haddadin, Sami, Müller, Matthias A.

论文摘要

最近,文献中提出了许多反应性轨迹计划方法,因为它们在机器人系统的杂乱无章和无法预测的环境中固有的即时适应。但是,通常这些方法仅在不考虑全球路径计划的情况下是本地反应性的,并且不能保证同时避免碰撞和目标融合。在本文中,我们研究了一个最近开发的圆形场(CF)的运动计划器,该计划通过调整人工磁场来结合局部反应性控制与全局轨迹产生,从而可以评估障碍物周围的多个轨迹。特别是,我们在平面环境中对该计划者进行了数学上严格的分析,以确保受控机器人的安全运动。与现有结果相反,派生的碰撞回避分析涵盖了整个CF运动计划算法,包括目标收敛的吸引力,并且不限于旋转场的特定选择,即,我们的保证不限于特定的潜在次优轨迹。我们的Lyapunov型避免碰撞分析是基于(等效)二维辅助系统的定义,这使我们能够在与点障碍物发生碰撞的情况下提供紧张的情况。此外,我们展示了该分析如何自然扩展到多个障碍,并为目标收敛指定了足够的条件。最后,我们提供了一个充满挑战的模拟方案,并具有多个非凸点云障碍,并证明了避免碰撞和目标收敛性。

Recently, many reactive trajectory planning approaches were suggested in the literature because of their inherent immediate adaption in the ever more demanding cluttered and unpredictable environments of robotic systems. However, typically those approaches are only locally reactive without considering global path planning and no guarantees for simultaneous collision avoidance and goal convergence can be given. In this paper, we study a recently developed circular field (CF)-based motion planner that combines local reactive control with global trajectory generation by adapting an artificial magnetic field such that multiple trajectories around obstacles can be evaluated. In particular, we provide a mathematically rigorous analysis of this planner in a planar environment to ensure safe motion of the controlled robot. Contrary to existing results, the derived collision avoidance analysis covers the entire CF motion planning algorithm including attractive forces for goal convergence and is not limited to a specific choice of the rotation field, i.e., our guarantees are not limited to a specific potentially suboptimal trajectory. Our Lyapunov-type collision avoidance analysis is based on the definition of an (equivalent) two-dimensional auxiliary system, which enables us to provide tight, if and only if conditions for the case of a collision with point obstacles. Furthermore, we show how this analysis naturally extends to multiple obstacles and we specify sufficient conditions for goal convergence. Finally, we provide a challenging simulation scenario with multiple non-convex point cloud obstacles and demonstrate collision avoidance and goal convergence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源