论文标题
迈向概括的几个开放式对象检测
Towards Generalized Few-Shot Open-Set Object Detection
论文作者
论文摘要
开放式对象检测(OSOD)旨在检测已知类别并在动态世界中拒绝未知的对象,这引起了很大的关注。但是,以前的方法仅在数据丰富的条件下考虑此问题,同时忽略了几个场景。在本文中,我们寻求一种通用的少数开放式对象检测(G-Food)的解决方案,该解决方案旨在避免将未知类检测为具有较高置信度得分的已知类别,同时保持几次射击检测的性能。这项任务的主要挑战是,很少有培训样本引起该模型在已知类别上过度拟合,从而导致开放式性能不佳。我们提出了一种新的G-Food算法来解决此问题,称为\下划线{f} ew-sh \下划线{o} t \下划线{o} pen-set \ pen setline {d} eTector(food),其中包含一个新颖的班级体重损害分类分类器(CWSC)和一个新颖的不知道的decoupling decoupling learner(udnernernernernerner)。为了防止过度拟合,CWSC随机将归一化权重的部分散布以进行所有类别的logit预测,然后降低类及其邻居之间的共同适应能力。在旁边,UDL解开了训练未知类别的训练,并使模型能够形成一个紧凑的未知决策边界。因此,可以以置信概率识别未知对象,而无需任何阈值,原型或生成。我们将我们的方法与几种最先进的OSOD方法在几个场景中进行了比较,并观察到我们的方法将未知类别的F-评分提高了4.80 \%-9.08 \%的VOC-Coco数据集设置中的所有照片\%\%\%\%\ footNote \ footNote \ footnote [1]
Open-set object detection (OSOD) aims to detect the known categories and reject unknown objects in a dynamic world, which has achieved significant attention. However, previous approaches only consider this problem in data-abundant conditions, while neglecting the few-shot scenes. In this paper, we seek a solution for the generalized few-shot open-set object detection (G-FOOD), which aims to avoid detecting unknown classes as known classes with a high confidence score while maintaining the performance of few-shot detection. The main challenge for this task is that few training samples induce the model to overfit on the known classes, resulting in a poor open-set performance. We propose a new G-FOOD algorithm to tackle this issue, named \underline{F}ew-sh\underline{O}t \underline{O}pen-set \underline{D}etector (FOOD), which contains a novel class weight sparsification classifier (CWSC) and a novel unknown decoupling learner (UDL). To prevent over-fitting, CWSC randomly sparses parts of the normalized weights for the logit prediction of all classes, and then decreases the co-adaptability between the class and its neighbors. Alongside, UDL decouples training the unknown class and enables the model to form a compact unknown decision boundary. Thus, the unknown objects can be identified with a confidence probability without any threshold, prototype, or generation. We compare our method with several state-of-the-art OSOD methods in few-shot scenes and observe that our method improves the F-score of unknown classes by 4.80\%-9.08\% across all shots in VOC-COCO dataset settings \footnote[1]{The source code is available at \url{https://github.com/binyisu/food}}.