论文标题

通过神经递归ODE结合互动事实以选择库存的事实

Incorporating Interactive Facts for Stock Selection via Neural Recursive ODEs

论文作者

Gao, Qiang, Zhou, Xinzhu, Zhang, Kunpeng, Huang, Li, Liu, Siyuan, Zhou, Fan

论文摘要

股票选择试图对优化投资决策的股票清单进行排名,以最大程度地降低投资风险,同时最大化利润回报。最近,研究人员开发了各种基于神经网络的(经常性)的方法来解决此问题。他们无一例外地利用历史市场的波动来提高选择绩效。但是,这些方法极大地依赖于离散的采样市场观察结果,这些观察结果未能考虑股票波动的不确定性,或者未来预测持续的股票动态。此外,一些研究考虑了从多个领域(例如行业和股东)得出的明确股票相互依存。然而,不同域之间的隐式交叉依赖性尚未探索。为了解决此类局限性,我们提出了一种新颖的股票选择解决方案 - 库克德(Stockode),一种带有高斯先验的潜在变量模型。具体而言,我们设计了一个运动趋势相关模块,以揭示与股票变动有关的随时间变化的关系。我们设计神经递归的普通微分方程网络(Nrodes),以连续的动态方式捕获库存波动的时间演变。此外,我们构建了一个分层超图,以在股票之间纳入域名依赖性。在两个现实世界中的股票市场数据集上进行的实验表明,Stockode的表现明显优于几个基线,例如夏普比率的平均提高高达18.57%。

Stock selection attempts to rank a list of stocks for optimizing investment decision making, aiming at minimizing investment risks while maximizing profit returns. Recently, researchers have developed various (recurrent) neural network-based methods to tackle this problem. Without exceptions, they primarily leverage historical market volatility to enhance the selection performance. However, these approaches greatly rely on discrete sampled market observations, which either fail to consider the uncertainty of stock fluctuations or predict continuous stock dynamics in the future. Besides, some studies have considered the explicit stock interdependence derived from multiple domains (e.g., industry and shareholder). Nevertheless, the implicit cross-dependencies among different domains are under-explored. To address such limitations, we present a novel stock selection solution -- StockODE, a latent variable model with Gaussian prior. Specifically, we devise a Movement Trend Correlation module to expose the time-varying relationships regarding stock movements. We design Neural Recursive Ordinary Differential Equation Networks (NRODEs) to capture the temporal evolution of stock volatility in a continuous dynamic manner. Moreover, we build a hierarchical hypergraph to incorporate the domain-aware dependencies among the stocks. Experiments conducted on two real-world stock market datasets demonstrate that StockODE significantly outperforms several baselines, such as up to 18.57% average improvement regarding Sharpe Ratio.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源