论文标题

Fussl:模糊不确定的自我监督学习

FUSSL: Fuzzy Uncertain Self Supervised Learning

论文作者

Mohamadi, Salman, Doretto, Gianfranco, Adjeroh, Donald A.

论文摘要

自我监督学习(SSL)已成为一项非常成功的技术,可以利用未标记数据的力量,而没有注释努力。许多开发的方法正在发展,目的是超过监督的替代方案,这些方法相对成功。 SSL中的一个主要问题是在不同设置下的方法的鲁棒性。在本文中,我们第一次认识到使用单个透视信号来自SSL的基本限制。为了解决这一限制,我们利用不确定性表示的力量为任何SSL基线设计了强大的一般标准层次学习/培训协议,无论其假设和方法如何。从本质上讲,使用信息瓶颈原则,我们将特征学习分解为两个阶段的训练程序,每个训练程序都有不同的监督信号。这种双重监督方法以两个关键步骤捕获:1)对数据增强的不变性执行,以及2)模糊的伪标签(硬式和软注释)。这个简单而有效的协议可以通过对模型的初步培训来实例化跨级/群集特征学习,该协议是通过对模型的初步培训来实例化的,将数据增强作为第一个训练阶段,然后将模糊标签分配给第二个训练阶段的原始样本。我们考虑通过双重监督的多种替代方案,并评估方法对最近的基线的有效性,涵盖了四个不同的SSL范式,包括几何,对比度,非对比度,硬/软化(减少冗余)盆地。在多个设置下进行的广泛实验表明,拟议的培训方案始终提高前基线的性能,而与各自的基本原则无关。

Self supervised learning (SSL) has become a very successful technique to harness the power of unlabeled data, with no annotation effort. A number of developed approaches are evolving with the goal of outperforming supervised alternatives, which have been relatively successful. One main issue in SSL is robustness of the approaches under different settings. In this paper, for the first time, we recognize the fundamental limits of SSL coming from the use of a single-supervisory signal. To address this limitation, we leverage the power of uncertainty representation to devise a robust and general standard hierarchical learning/training protocol for any SSL baseline, regardless of their assumptions and approaches. Essentially, using the information bottleneck principle, we decompose feature learning into a two-stage training procedure, each with a distinct supervision signal. This double supervision approach is captured in two key steps: 1) invariance enforcement to data augmentation, and 2) fuzzy pseudo labeling (both hard and soft annotation). This simple, yet, effective protocol which enables cross-class/cluster feature learning, is instantiated via an initial training of an ensemble of models through invariance enforcement to data augmentation as first training phase, and then assigning fuzzy labels to the original samples for the second training phase. We consider multiple alternative scenarios with double supervision and evaluate the effectiveness of our approach on recent baselines, covering four different SSL paradigms, including geometrical, contrastive, non-contrastive, and hard/soft whitening (redundancy reduction) baselines. Extensive experiments under multiple settings show that the proposed training protocol consistently improves the performance of the former baselines, independent of their respective underlying principles.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源