论文标题
算术Yau-Zaslow公式
An arithmetic Yau-Zaslow formula
论文作者
论文摘要
我们通过与莱文(Levine)的作品相关的“动机欧拉(Euler)特征”来代替博维尔(Beauville)论证中的古典欧拉(Beauville)特征,从而证明了Yau-Zaslow公式的算术精致。我们的结果暗示了其他相关不变的类似公式,包括对Kharlamov和Rasdeaconu公式的概括,以计算实际K3表面上的实际有理曲线,以及Saito的共同体决定因素。
We prove an arithmetic refinement of the Yau-Zaslow formula by replacing the classical Euler characteristic in Beauville's argument by a "motivic Euler characteristic", related to the work of Levine. Our result implies similar formulas for other related invariants, including a generalisation of a formula of Kharlamov and Rasdeaconu on counting real rational curves on real K3 surfaces, and Saito's determinant of cohomology.