论文标题
基于运动原始的路径计划,并快速探索随机树
Motion Primitives based Path Planning with Rapidly-exploring Random Tree
论文作者
论文摘要
我们提出了一种使用快速探索的随机树(RRT)为机器人生成动力学可行的路径的方法。我们利用运动原语作为捕获机器人动力学的一种方式,并使用这些运动原语来用RRT构建树的分支。由于每个分支都是使用机器人的运动原始构建的,不会导致与障碍物发生碰撞,因此所得路径可以保证满足机器人的动力学约束,因此对于导航而言是可行的,而无需对生成的轨迹进行任何后处理。我们使用具有各种运动原始图的简单机器人模型在模拟的2D环境中证明了方法的有效性。
We present an approach that generates kinodynamically feasible paths for robots using Rapidly-exploring Random Tree (RRT). We leverage motion primitives as a way to capture the dynamics of the robot and use these motion primitives to build branches of the tree with RRT. Since every branch is built using the robot's motion primitives that doesn't lead to collision with obstacles, the resulting path is guaranteed to satisfy the robot's kinodynamic constraints and thus be feasible for navigation without any post-processing on the generated trajectory. We demonstrate the effectiveness of our approach in simulated 2D environments using simple robot models with a variety of motion primitives.