论文标题

de branges的循环性 - 摇滚空间

Cyclicity in de Branges--Rovnyak spaces

论文作者

Fricain, Emmanuel, Grivaux, Sophie

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

In this paper, we study the cyclicity problem with respect to the forward shift operator $S_b$ acting on the de Branges--Rovnyak space $\mathscr{H}(b)$ associated to a function $b$ in the closed unit ball of $H^\infty$ and satisfying $\log(1-|b|)\in L^1(\mathbb T)$. We present a characterisation of cyclic vectors for $S_b$ when $b$ is a rational function which is not a finite Blaschke product. This characterisation can be derived from the description, given in [S. Luo, C. Gu, S. Richter, Higher order local Dirichlet integrals and de Branges--Rovnyak spaces, \emph{Adv. Math., \textbf{385} (2021), paper No. 107748, 47], of invariant subspaces of $S_b$ in this case, but we provide here an elementary proof. We also study the situation where $b$ has the form $b=(1+I)/2$, where $I$ is a non-constant inner function such that the associated model space $K_I=\mathscr{H}(I)$ has an orthonormal basis of reproducing kernels.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源